Computational Laboratory for Energy And Nanoscience

University Homepage | Department of Physics |
Physics Homepage | Department contact information
Map it | City of Ottawa | Regional News | Local Weather | Government of Canada
subglobal4 link | subglobal4 link | subglobal4 link | subglobal4 link | subglobal4 link | subglobal4 link | subglobal4 link
subglobal5 link | subglobal5 link | subglobal5 link | subglobal5 link | subglobal5 link | subglobal5 link | subglobal5 link
subglobal6 link | subglobal6 link | subglobal6 link | subglobal6 link | subglobal6 link | subglobal6 link | subglobal6 link
subglobal7 link | subglobal7 link | subglobal7 link | subglobal7 link | subglobal7 link | subglobal7 link | subglobal7 link
subglobal8 link | subglobal8 link | subglobal8 link | subglobal8 link | subglobal8 link | subglobal8 link | subglobal8 link

Manuscript Summary - Adversarial generation of mesoscale surface from small scale chemical motifs

We demonstrate the use of a regressive upscaling generative adversarial network (RUGAN) as an effective way to sample state space for hexagonal porous graphene sheets. The RUGAN can, after being trained on a set of small-scale examples, generate new, energetically relevant microstates (atomic configurations). The RUGAN can generate configurations across a continuum of total energy values and produce configurations at requested energy values. The microstates produced respect periodic boundary conditions, and importantly, the fully convolutional nature of the generator allows the generation of arbitrarily large microstates, after being trained on only a small-scale data set.

https://pubs.acs.org/doi/10.1021/acs.jpcc.0c06673

CLEAN uOttawa UOIT