- 1. Let's build a 4th order polynomial whose first derivative goes to zero at α , β , and δ . One way to do this is let $V'(x) = (x \alpha)(x \beta)(x \delta)$. Assume that $\alpha < \beta < \delta$.
 - (a) What is the polynomial expansion (i.e. expand the brackets) of V'(x)?
 - (b) Integrate your result from part (a) to determine a potential energy V(x).
 - (c) What are the conditions on α , β , and δ that will guarantee V(x) has two distinct local minima?
 - (d) For the remaining questions, let's look at the specific case of $\alpha = 2$, $\beta = 3$, and $\delta = 5$. Plot the function V(x). Your x-range should cover x=1 to x=6 to see the minima clearly.
 - (e) Compute the Taylor expansion of V(x) in the neighbourhood of x = 2. Call this expansion $V_{\alpha}(x)$.
 - (f) Compute the Taylor expansion of V(x) in the neighbourhood of x = 3. Call this expansion $V_{\beta}(x)$.
 - (g) Compute the Taylor expansion of V(x) in the neighbourhood of x = 5. Call this expansion $V_{\delta}(x)$.
 - (h) We now consider a *small oscillation* centred around $x = \alpha$. Your taylor expansion should have terms involving $(x - \alpha)^n$. A small oscillation means $x \approx \alpha$. This means we are taking small numbers and multiplying them by *themselves* n times. This gives an even smaller number. It is reasonable to assume that terms involving n > 2, e.g. $(x - \alpha)^3$ and above can safely be ignored. Remove these terms from your expression for $V_{\alpha}(x)$.
 - (i) Do the same for $V_{\beta}(x)$ and $V_{\delta}(x)$.
 - (j) Having made this approximation, you should have three functions, each of which is a familiar parabola. For each function $V_{\alpha}(x)$, $V_{\beta}(x)$, and $V_{\delta}(x)$, write an expression for the force $F_{\alpha}(x)$, $F_{\beta}(x)$, and $F_{\delta}(x)$.
 - (k) Use your expressions for the force in the neighbourhoods of $x = \alpha$, $x = \beta$, and $x = \delta$ to write down equations of motion for a particle of mass m. You should have three equations of motions. Each is valid only in their own neighbourhood.
 - (1) What is the frequency a particle with a small oscillation around $x = \alpha$?
 - (m) What is the frequency a particle with a small oscillation around $x = \beta$?
 - (n) What is the frequency a particle with a small oscillation around $x = \delta$?
 - (o) Justify on physical grounds your result from (m)
 - (p) Students generally wonder how small of an amplitude does an oscillation need to be in order for the above approximations to be valid. Let's answer a different question: for this system, when are the oscillations large enough for the approximation to be invalid? Does the starting point matter?
 - (q) If in part (h) we had been more cautious and thrown away terms involving n > 1, what would have happened? You need not redo all the questions. Just look at your expression for the force.