- V Letourneau, C. Bellinger, I. Tamblyn, Maia Fraser, "Time and temporal abstraction in continual learning: tradeoffs, analogies and regret in an active measuring setting", 2nd Conference on Lifelong Learning Agents (CoLLAs) (2023)
|
|
- Z. Gariepy, Z. Chen, I. Tamblyn, C. Veer Singh, C.G. Tetsassi Feugmo, "Automatic graph representation algorithm for heterogeneous catalysis", 1, 3, APL Machine Learning, [(open access link)] (2023)
|
|
- H. Choubisa*, P. Todorovic*, J.M. Pina, D.H. Parmar, O. Voznyy, I. Tamblyn, E. Sargent, "Interpretable discovery of new semiconductors with machine learning", npj Computational Materials 9:11 [(open access link)] (2023)
|
|
- S. Whitelam & I. Tamblyn,, "Cellular automata can classify data by inducing trajectory phase coexistence", [(open access link)] accepted Phys. Rev. E (2023)
|
|
- S. Whitelam, V. Selin, I. Benlolo, C. Casert, I. Tamblyn, "Training neural networks using Metropolis Monte Carlo and an adaptive variant", [(open access link)] accepted MLST (2022)
|
|
- Z.-W. Chen, Z. Gariepy, L. Chen; X. Yao, A. Anand, S.-J. Liu, C. Feugmo, I. Tamblyn, C. Veer Singh, "Machine learning-driven high entropy alloy catalyst discovery to circumvent the scaling relation for CO2reduction reaction", ACS Catalysis, https://pubs.acs.org/doi/abs/10.1021/acscatal.2c03675 (2022)
|
|
- K. Ryczko, J.T. Krogel, I. Tamblyn, "Machine Learning Diffusion Monte Carlo Energy Densities", [(open access link)] accepted Journal of Chemical Theory and Computation (2022)
|
|
- S.J. Wetzel, R.G. Melko, I. Tamblyn, "Twin Neural Network Regression is a Semi-Supervised Regression Algorithm", [(open access link)] accepted, MLST (2022)
|
|
- S. Wetzel, K. Ryczko, R. Melko, I. Tamblyn, "Twin Neural Network Regression", submitted [(open access link)] accepted, Applied AI (2022)
|
|
- M. Lytova, M. Spanner, I. Tamblyn, "Deep learning and high harmonic generation", [(open access link)] accepted Can. J. Phys. (2022)
|
|
- H. Anwar, A. Johnston, S. Mahesh, K. Singh, Z. Wang, D. A. Kuntz, I. Tamblyn, O. Voznyy, G.G. Privé, and E.H. Sargent, "High-Throughput Evaluation of Emission and Structure in Reduced-Dimensional Perovskites", [(open access link)] ACS Cent. Sci., XXXX, XXX, XXX-XXX (2022)
|
|
- M. S. Ghaemi, K. Grantham, I. Tamblyn, Y. Li, H.K. Ooi†, "Generative Enriched Sequential Learning (ESL) Approach for Molecular Design via Augmented Domain Knowledge", [(open access link)] accepted CanadianAI (2022)
|
|
- C. Bellinger, A. Drozdyuk, M. Crowley, I. Tamblyn, "Scientific Discovery and the Cost of Measurement -- Balancing Information and Cost in Reinforcement Learning", [(open access link)] accepted CanadianAI (2022)
|
|
- Kulik, Heather and Hammerschmidt, Thomas and Schmidt, Jonathan and Botti, Silvana and Marques, Miguel A. L. and Boley, Mario and Scheffler, Matthias and Todorović, Milica and Rinke, Patrick and Oses, Corey and Smolyanyuk, Andriy and Curtarolo, Stefano and Tkatchenko, Alexandre and Bartok, Albert and Manzhos, Sergei and Ihara, Manabu and Carrington, Tucker and Behler, Jörg and Isayev, Olexandr and Veit, Max and Grisafi, Andrea and Nigam, Jigyasa and Ceriotti, Michele and Schütt, Kristoff T and Westermayr, Julia and Gastegger, Michael and Maurer, Reinhard and Kalita, Bhupalee and Burke, Kieron and Nagai, Ryo and Akashi, Ryosuke and Sugino, Osamu and Hermann, Jan and Noé, Frank and Pilati, Sebastiano and Draxl, Claudia and Kuban, Martin and Rigamonti, Santiago and Scheidgen, Markus and Esters, Marco and Hicks, David and Toher, Cormac and Balachandran, Prasanna and Tamblyn, Isaac and Whitelam, Stephen and Bellinger, Colin and Ghiringhelli, Luca M. "Roadmap on Machine Learning in Electronic Structure", accepted Electronic Structure, [(open access link)] (2022)
|
|
- K. Ryczko, S.J. Wetzel, R.G. Melko, I. Tamblyn, "Orbital-Free Density Functional Theory with Small Datasets and Deep Learning", accepted Journal of Chemical Theory and Computation, [(open access link)] (2022)
|
|
- P. Saidi, H. Pirgazi, M. Sanjari, S. Tamimi, M. Mohammadi, L.K. Beland, M.R. Daymond, I. Tamblyn, "Deep Learning and Crystal Plasticity: A Preconditioning Approach for Accurate Orientation Evolution Prediction", Computer Methods in Applied Mechanics and Engineering, 389, 114392 [CMAME(open access link)] (2022)
|
|
- C. Beeler, U. Yahorau, R. Coles, K. Mills, S. Whitelam, and I. Tamblyn, "Optimizing thermodynamic trajectories using evolutionary and gradient-based reinforcement learning", Phys. Rev. E 104, 064128 [PRE (open access link)] (2021)
|
|
- M. Aldeghi, F. Hase, R.J. Hickman, I. Tamblyn, A. Aspuru-Guzik, "Golem: An algorithm for robust experiment and process optimization", Chem. Sci., 12, 14792-14807 [Chemical Science (open access link)] (2021)
|
|
- P. Abdolghader, G. Resch, A. Ridsdale, T. Grammatikopoulos, F. Légaré, A. Stolow, A.F. Pegoraro, I. Tamblyn, "Unsupervised Hyperspectral Stimulated Raman Microscopy Image Enhancement: Denoising and Segmentation via One-Shot Deep Learning", [(open access link)] acceptedOptics Express (2021)
|
|
- S. Whitelam, V. Selin, S.-W. Park, I. Tamblyn, "Correspondence between neuroevolution and gradient descent", accepted Nature Communications, [(open access link)] (2021)
|
|
- C. Casert, K. Mills, T Vieijra, J Ryckebusch, and I. Tamblyn, "Optical lattice experiments at unobserved conditions and scales through generative adversarial deep learning", accepted Phys. Rev. Research[(open access link)] (2021)
|
|
- C. Casert, T. Vieijra, S. Whitelam, I. Tamblyn, "Dynamical large deviations of two-dimensional kinetically constrained models using a neural-network state ansatz", Phys. Rev. Lett. 127, 120602, [(PRL/NeurIPS Workshop/open access link)] (2021)
|
|
- S. Whitelam, I. Tamblyn, "Neuroevolutionary learning of particles and protocols for self-assembly", Phys. Rev. Lett. 127, 018003, [(open access link)] (2021)
|
|
- C.G. Tetsassi Feugmo, K. Ryczko, A. Anand, C. Veer Singh, and I. Tamblyn, "Neural evolution structure generation: High Entropy Alloys", [(open access link)] accepted (2021) Cover article
|
|
- C. Bellinger, R. Coles, M. Crowley, I. Tamblyn, "Active Measure Reinforcement Learning for Observation Cost Minimization", submitted [(open access link)] (2021)
|
|
- P. Friederich, M. Krenn, I. Tamblyn, A. Aspuru-Guzik, "Scientific intuition inspired by machine learning generated hypotheses", accepted Machine Learning: Science and Technology, [(open access link)] (2021)
|
|
- K. Sprague, J. Carrasquilla, S. Whitelam, and I. Tamblyn, "Watch and learn -- a generalized approach for transferrable learning in deep neural networks via physical principles", Machine Learning: Science and Technology, 2, 2 [MLST (open access link)] (2021)
|
|
- K. Ryczko, P. Darancet, I. Tamblyn, "Inverse Design of a Graphene-Based Quantum Transducer via Neuroevolution", J. Phys. Chem. C, 124, 48, 26117-26123 [J. Phys. Chem. C. (open access link)] (2020)
|
|
- K. Mills, P. Ronagh, and I. Tamblyn, "Controlled Online Optimization Learning (COOL): Finding the ground state of spin Hamiltonians with reinforcement learning", Nature Machine Intelligence, 2, 509-517 [(open access link)] (2020), Cover Article
== News coverage ==
|
|
- N. A. Rice, W. J. Bodnaryk, I. Tamblyn, Z. J. Jakubek, J. Lefebvre, G. Lopinski, A. Adronov, and C. M. Homenick, "Noncovalent Functionalization of Boron Nitride Nanotubes Using Poly(2,7-carbazole)s", J. Poly. Sci, 58, 13, [JPS] (2020)
|
|
- S. Whitelam, D. Jacobson, and I. Tamblyn, "Evolutionary reinforcement learning of dynamical large deviations, J. Chem. Phys. 153, 044113 [JCP (open access link)] (2020)
|
|
- Hitarth Choubisa, M. Askerka, K. Ryczko, O. Voznyy, K. Mills, I. Tamblyn, and E.H. Sargent, "Crystal Site Feature Embedding Enables Exploration of Large Chemical Spaces", Matter 3, 1 [Matter], (2020)
|
|
- S. Whitelam, I. Tamblyn, "Learning to grow: control of materials self-assembly using evolutionary reinforcement learning", Phys. Rev. E, 101, 052604 [PRE(open access link)] (2020)
|
|
- C. Bellinger, R. Coles, M. Crowley I. Tamblyn, "Reinforcement Learning in a Physics-Inspired Semi-Markov Environment", accepted, CanadianAI [(open access link)] (2020)
|
|
- K. Ryczko, D. Strubbe, and I. Tamblyn, "Deep learning and density functional theory", Phys. Rev. A 100, 022512 [PRA (open access link)] (2019)
|
|
- K. Mills, I. Luchak, K. Ryczko, A. Domurad, C. Beeler, and I. Tamblyn, "Extensive deep neural networks for transferring small scale learning to large scale systems", Chemical Science, 10, 15, 4119-4354, [Chemical Science (open access link)] (2019), Cover Article
Code examples here
|
|
- M. E. C. Pascuzzi, E. Selinger A. Sacco, M. Castellino, P. Rivolo, S. Henrandez, G. Lopinski, I. Tamblyn, R. Nasi, S. Esposito, M. Manzoli, B. Bonelli, and M. Armandia, "Beneficial effect of iron addition on the catalytic activity of electrodeposited MnOx films in the water oxidation reaction", Electrochimica Acta 284, 294-302, [EA] (2018)
|
|
- K. Ryczko, K. Mills, I. Luchak, C. Homenick, and I. Tamblyn, "Convolutional neural networks for atomistic systems", accepted, Computational Materials Science, [Comp. Mat. Sci. (open access link)] (2018)
|
|
- K. Mills and I. Tamblyn, "Deep neural networks for learning operators through observation: the case of the 2d spin models", Phys. Rev. E 97, 032119, [PRE (open access link)] (2018)
|
|
- K. Mills, M. Spanner, and I. Tamblyn, "Deep learning and the Schrodinger equation", Phys. Rev. A 96, 042113, [PRA (open access link)], Editor's Suggestion, (2017)
|
|
- I. Tamblyn, "The electronic structure of nanoscale interfaces", Molecular Simulation, 43, 10-11, [Mol. Sim.] (2017)
|
|
- Y. Chen, I. Tamblyn, and S.Y. Quek, "Energy Level Alignment at Hybridized Organic-Metal Interfaces: The Role of Many-Electron Effects", accepted, J. Phys. Chem. C., [JPC] (2017)
|
|
- N. Portman & I. Tamblyn "Sampling algorithms for validation of supervised learning models for Ising-like systems", Journal of Computational Physics, 350, 871-890, [JCP (open access link)] (2017)
|
|
- K. Ryczko & I. Tamblyn "Structural characterizations of water-metal interfaces", Phys. Rev. B 96, 064104, [PRB (open access link)] (2017)
|
|
- K. Ryczko, A. Domurad, N. Buhagiar, and I. Tamblyn, "hashkat: Large-scale simulations of online social networks", Soc. Netw. Anal. Min. 7:4, [SNA (open access link)] (2017)
|
|
- G. Gupta, M. Radhakrishna, I. Tamblyn, D. QH Tran, M. Besemann, A. Thonnagith, M.F. Elgueta, M.E. Robitaille, R.J. Finlayson, "A randomized comparison between neurostimulation- and ultrasound-guided lateral femoral cutaneous nerve block", accepted Army Medical Dept. J., (2016)
|
|
- S Whitelam, I. Tamblyn, J.P. Garrahan, and P.H. Beton, "Emergent rhombus tilings from molecular interactions with M-fold rotational symmetry", Phys. Rev. Lett., 114, 115702 [PRL (open access link)] (2015) Cover article
|
|
- S. Choing, A. J. Francis, G. Clendenning*, M. Schuurman, Roger D. Sommer, I. Tamblyn, W.W. Weare, and T. Cuk, "Long-Lived LMCT in a d0 Vanadium(V) Complex by Internal Conversion to a State of 3dxy Character", J. Phys. Chem. C, 2015, 119 (30), 17029-17038, (2015) Cover article
|
|
- I. Tamblyn, S. Refaely-Abramson, J.B. Neaton, and L. Kronik, "Simultaneous determination of structures, vibrations, and frontier orbital energies from a self-consistent range-separated hybrid functional", J. Phys. Chem. Lett., 5, 2734, [JPCL] (2014)
|
|
- S.G. Srinivasan, N. Goldman, I. Tamblyn, S. Hamel, and M. Gaus, "A Density Functional Tight Binding Model with an Extended Basis Set and Three-Body Repulsion for Hydrogen under Extreme Thermodynamic Conditions", J. Phys. Chem. A, 118, 5520-5528 [JPCA] (2014)
|
|
- S. Whitelam, I. Tamblyn, T.K. Haxton, M.B. Wieland, N.R. Champness, J.P. Garrahan, and P.H. Beton, "Common physical framework explains phase behavior and dynamics of atomic, molecular and polymeric network-formers", Phys. Rev. X 4, 011044, [PRX (open access link)] (2014)
|
|
- N. Goldman, I. Tamblyn, "Prebiotic chemistry within a simple impacting icy mixture", Journal of Physical Chemistry A, 117 (24), 5124-5131, [JPCA], (2013), Cover article
== News coverage ==
|

|
- T.K. Haxton, H. Zho, I. Tamblyn, D. Eom, Z. Hu, J.B. Neaton, T.F. Heinz, and S. Whitelam, "Competing thermodynamic and dynamic factors select molecular assemblies on a gold surface", Phys. Rev. Lett., 111, 265701 [PRL (open access link)] (2013)
|
|
- M. Yu, P. Doak, I. Tamblyn, and J.B. Neaton, "Theoretical design of redox levels of thiophene on functionalized light-absorbing semiconductor surfaces", J. Phys. Chem. Lett., 4, 1701-1706, [JPCL], (2013)
|
|
- S. Sharifzadeh, I. Tamblyn, P. Doak, P. Darancet, and J.B. Neaton, "Quantitative Molecular Orbital Energies within a G0W0 Approximation", European Physical Journal B, [EPJB (open access link)], (2012)
|
|
- G. Li, I. Tamblyn, V. Cooper and J.B. Neaton, "Molecular Adsorption on Metal Surfaces with a van der Waals Density Functional", Phys. Rev. B 85, 121409(R), [PRB (open access link)], (2012)
|
|
- S. Whitelam, I. Tamblyn, P.H. Beton and J.P. Garrahan, "Random and ordered phases of off-lattice rhombus tiles", Physical Review Letters, 108, 035702, [PRL (open access link)], (2012)
|
|
- I. Tamblyn, P. Darancet, S.Y. Quek, S.A. Bonev, and J.B. Neaton, "Electronic energy level alignment at metal-molecule interfaces with a GW approach", Phys. Rev. B 84, 201402(R), [PRB (open access link)], (2011)
|
|
- A. Biller, I. Tamblyn, J.B. Neaton, and L. Kronik, "Electronic level alignment at a metal-molecule interface from a short-range hybrid functional", J. Chem. Phys. 135, 164706, [JCP] (2011)
|
|
- M.A. Morales, L.X. Benedict, D.S. Clark, E. Schwegler, I. Tamblyn, S.A. Bonev, A.A. Correa, S. W. Haan, "Ab initio equation of state of hydrogen for inertial fusion applications", High Energy Density Physics 8, 1, (2011)
- I. Tamblyn and S.A. Bonev "Structure and phase boundaries of compressed liquid hydrogen", Physical Review Letters, 104, 065702, [PRL (open access link)] (2010). PRL Editor's Suggestion; featured in Physics
|
|
- I. Tamblyn and S.A. Bonev "A note on the metallization of compressed liquid hydrogen", Journal of Chemical Physics, 132, 134503, [JCP (open access link)] (2010)
|
|
- M. Dell'Angela, G. Kladnik, A. Cossaro, A. Verdini, M. Kamenetska, I. Tamblyn, S.Y. Quek, J.B. Neaton, D. Cvetko, A. Morgante, L. Venkataraman "Relating Energy Level Alignment and Amine-Linked Molecular Junction Conductance", Nano Lett., 10 (7), pp 2470-2474, (2010)
|
|
- I. Tamblyn, J.-Y. Raty, S.A. Bonev "Tetrahedral clustering in molten lithium under pressure", Physical Review Letters, 101, 075703 (2008). Cover article
|
|
- B. Militzer, W.B. Hubbard, J. Vorberger, I. Tamblyn, and S.A. Bonev "Massive core in Jupiter predicted from first-principles simulations", Astrophysical Journal Letters, 688: L45-L48 (2008)
- I. Tamblyn and S.A. Bonev "Exploring the high pressure phase diagrams of light elements using large scale ab-initio molecular dynamics simulations", HPCS, pp. 154-160, 22nd International Symposium on High Performance Computing Systems and Applications (2008)
- J. Vorberger, I. Tamblyn, B. Militzer, S.A. Bonev "Hydrogen-Helium Mixtures in the Interiors of Giant Planets", Phys. Rev. B, 75, 024206 (2007)
- I. Tamblyn, J. Vorberger, B. Militzer, S.A. Bonev, "Inside the Jovian atmosphere: Hydrogen and Helium at extreme conditions", Physics in Canada, 63, 3, 133, Cover article (2007)
|
|
- J. Vorberger, I. Tamblyn, S.A. Bonev, B. Militzer "Properties of Dense Fluid Hydrogen and Helium in Giant Gas Planets" Contrib. Plasma Phys. 47, 4-5, 375 (2007)
- J. Garcia Sucerquia, W. Xu, S.K. Jericho, M.H. Jericho, I. Tamblyn, H.J. Kreuzer "Digital in line holography: 4-D imaging and tracking of microstructures and organisms in microfluidics and biology" ICO20: Biomedical Optics, Proc. SPIE 6026, 267-275, (2006, undergraduate work)
- I. Tamblyn and B. Paton "Sands of Time", Canadian Undergraduate Physics Journal, 4:13-16 (2005, undergraduate work)